tained. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed the recovery of (E and Z)-7a ($6.1 \%, E: Z=2.1: 1$). 22: ${ }^{1} \mathrm{H}$ NMR $\delta 1.78-1.98(3 \mathrm{H}, \mathrm{m}), 2.69(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 2.80(2 \mathrm{H}, \mathrm{t}, J=$ $6.9 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.11-7.52(9 \mathrm{H}, \mathrm{m})$; IR (liquid film) 3545 (br), 3400 (br), 1605 (s), 1115 (s), 1095 (s), 1075 (s), 1025 (s), 995 (s), 925 (s), 840 (s), 760 (s), 750 (s), 700 (s), $660 \mathrm{~cm}^{-1}$ (s); mass spectrum, m / z (relative intensity) $286\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{37} \mathrm{Cl}\right.$, 3), $284\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{35} \mathrm{Cl}, 9\right.$), 294 (14), 231 (10), 118 (31), 107 (100), 91 (25); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{37} \mathrm{Cl} 286.0939$ and $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}^{35} \mathrm{Cl}$ 284.0969 (found 286.0938 and 284.0970).

Reaction of Menthone with (2-Methylpropenyl)lithium. To a THF (5 mL) solution of menthone ($168.6 \mathrm{mg}, 1.09 \mathrm{mmol}$) was added 1.10 mmol of 2-propenyllithium (0.196 M in THFpentane) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . After the usual workup the crude mixture was analyzed by capillary GLC (PEG-20M). Reaction of menthone with n-BuLi was performed by a similar procedure.

Reaction of Menthone with ((2,3-Benzo-2-cyclohexylidene)methyl)magnesium Chloride. The Grignard reagent was prepared by refluxing a THF (7.5 mL) mixture of magnesium turnigs ($144 \mathrm{mg}, 6.00 \mathrm{mmol}$) and $7 \mathrm{a}(E: Z=84: 16)(538$ $\mathrm{mg}, 3.01 \mathrm{mmol}$) in the presence of several milligrams of iodine. To this was added $924 \mathrm{mg}(5.92 \mathrm{mmol})$ of menthone, and the mixture was heated under reflux for 0.5 h . The usual workup followed by flash chromatography ($1-10 \%$ ether in petroleum ether) gave $178.2 \mathrm{mg}(20 \%)$ of $(E)-21$ and $11.7 \mathrm{mg}(1.3 \%)$ of (Z)-21.

Acknowledgment. Support of this work by Grant-in-

Aid for Special Project Research from the Japan Ministry of Education, Science and Culture (No. 61225014) is gratefully acknowledged.
Registry No. 4a-K, 22379-62-0; 4a-Li, 15082-42-5; 4a- d_{2}, 114507-60-7; 4b•K, 73447-13-9; 4c.K, 95465-43-3; 4d•K, 2245-69-4; 4e-K, 114507-39-0; 4f.K, 54637-77-3; 4f.Li, 4111-51-7; 4f-1-d, $114507-68-5 ; 4 \mathrm{~g} \cdot \mathrm{~K}, 78278-74-7 ; \mathbf{4 g} \cdot \mathrm{Li}, \quad 15675-21-5 ; 4 \mathrm{~g}-3-d$, 114507-71-0; 5a, 513-37-1; 5b, 3017-69-4; (E)-6a, 68089-82-7; (Z)-6a, 68089-83-8; 66, 57124-78-4; (E)-7a, 114507-40-3; (Z)-7a, 114507-41-4; 7b, 91092-18-1; 8a, 95465-44-4; 8a- d_{2}, 114507-61-8; (E)-8c, 114507-45-8; (Z)-8c, 114507-46-9; 8d, 95465-56-8; 8e, 95465-46-6; 8f, 62217-47-4; 8h, 114507-49-2; 8i, 6244-46-8; (E)-8j, 114507-50-5; (Z)-8j, 114507-51-6; (E)-8k, 114507-52-7; (E)-8k-d, 114507-70-9; (Z)-8k, 114507-53-8; (Z)-8k- d, 114507-69-6; (E)-8n, 114507-56-1; (E)-8n-d, 114507-73-2; (Z)-8n, 114507-57-2; (Z)-8n-d, 114507-72-1; (E)-8m, 114507-54-9; (Z)-8m, 114507-55-0; 9a, 95465-55-7; 9b, 5445-30-7; 9c, 19780-41-7; (E)-10b, 114507-43-6; (Z)-10b, 114507-44-7; (E)-10g, 114507-47-0; (Z)-10g, 114507-48-1; 11.Li, $95465-51-3 ; 11 \cdot \mathrm{~K}, 95465-47-7$; 11-d•K, 114507-58-3; 12, 95465-48-8; 12-d, 95483-62-8; 13, 95465-49-9; 14, 95465-50-2; 15, 114507-59-4; 16, 53282-30-7; 17, 95465-54-6; 18, 114507-63-0; (E)-20, 114507-64-1; (Z)-20, 114507-65-2; 19, 114507-42-5; (E)-21, 114507-66-3; (Z)-21, 114507-67-4; 22, 114507-74-3; 1-methoxy-3-methyl-1-phenyl-2-butene-1,2-d d_{2}, 114507-62-9; 1-methoxy-3-methyl-1-phenyl-2butene, 83605-31-6; menthone, 89-80-5; ($(2,3$-benzo-2-cyclohexylidene)methyl)magnesium chloride, 114507-75-4; 1-(4-chlorophenyl)-1-methoxy-3-methyl-2-butene, 114507-76-5.

Formation of 1-Phenyl-2,3-dioxabicyclo[2.2.1]heptane in the Reaction of 1,3-Dibromo-4-phenylcyclopentane with Hydrogen Peroxide in the Presence of Silver Trifluoroacetate ${ }^{\dagger}$

Kimio Takahashi, ${ }^{\ddagger}$ Motoo Shiro, ${ }^{8}$ and Morio Kishi* ${ }^{\text {, }}{ }^{\ddagger}$
Shionogi Research Laboratories, Shionogi \& Co., Ltd., Fukushima-ku, Osaka 553, Japan

Received November 17, 1987

Abstract

Reaction of 1,3-dibromo-4-phenylcyclopentane (23), prepared from 4-hydroxycyclopent-2-en-1-one (10) in a stereocontrolled manner, or its stereoisomer 24 with anhydrous hydrogen peroxide in the presence of silver trifluoroacetate in ether gave 1-phenyl-2,3-dioxabicyclo[2.2.1]heptane (25) mainly as a rearranged product. The expected 5-phenyl-2,3-dioxabicyclo[2.2.1]heptane (8) and phenylcyclopentenyl hydroperoxides 26 and 27 were also formed in this reaction. An authentic sample of endoperoxide 8 was prepared by using peroxide transfer reaction between bis(tri-n-butyltin) peroxide and bistriflate of cis-diol 35 . The stereochemistry of the endoperoxide 8 and related compounds in this series was confirmed by correlation with the data from X-ray crystallographic analysis of the diacetate of diol 21 obtained from endoperoxide 8 by stannous chloride reduction.

Since the time prostaglandin endoperoxides PGG_{2} (1) and PGH_{2} (2) were isolated and characterized by Hamberg and Samuelsson ${ }^{1}$ in 1973, the chemistry of endoperoxides has been studied extensively. ${ }^{2,3}$ Several methods have been developed for the synthesis of endoperoxides. The simplified endoperoxide 2,3-dioxabicyclo[2.2.1]heptane (3) was synthesized as a model compound for PG endoperoxides 1 and 2. Salomon and Salomon ${ }^{4}$ reported the synthesis of 3 by peroxide transfer reaction between the bistriflate of cyclopentane-1,3-diol and bis(tri- n-butyltin) peroxide. Porter and Gilmore ${ }^{5}$ reported synthesis of 3 by intramolecular cyclization of 3-bromocyclopentane 1 hydroperoxide, or by the double displacement reaction of

[^0]1,3-dibromocyclopentane with hydrogen peroxide in the presence of silver acetate. Adam and Eggelte ${ }^{6}$ reported a simple synthesis of 3 from cyclopentadiene using singlet oxygen followed by diimide reduction. Recently, 3 was synthesized from bicyclo[2.1.0]pentane via tert-butyl peroxymercuriation by Bloodworth and Hargreaves. ${ }^{7}$ The trapping of triplet cyclopentane-1,3-diyl with oxygen to

[^1]yield single-chain endoperoxide 4 was reported by Wilson, Adam, and collaborators. ${ }^{8}$ Formation of 8,12(PG num-bering)-cis-disbustituted endoperoxide 5 from an acyclic hydroperoxide using radical cyclization was reported by O'Connor's group. ${ }^{9}$ Corey and his group ${ }^{10}$ reported the synthesis of the cis-disubstituted endoperoxide 6 by radical

cyclization of a mercuric compound. Total synthesis of PGH_{2} (2) was accomplished by the displacement reaction of a substituted 1,3-dibromocyclopentane derivative with potassium superoxide by Johnson and collaborators ${ }^{11}$ and independently by Porter and collaborators ${ }^{12,13}$ using hydrogen peroxide. Then, total synthesis of PGG_{2} (1) was also reported by Porter's group ${ }^{14}$ in a similar way. Because $\mathrm{PGH}_{2}(2)$ is a pivotal compound in prostaglandin biosynthesis, ${ }^{15}$ many model reactions of endoperoxides have been reported. ${ }^{2,3}$ Noyori and collaborators reported the palladium $(0)^{16}$ or ruthenium(II) ${ }^{17}$ catalyzed reaction of PGH_{2} methyl ester to primary PGs, methyl ($5 Z, 8 E, 10 E, 12 S$)12 -hydroxy- $5,8,10$-heptadecatrienoate (HHT), and malonaldehyde. Porter and Mebane ${ }^{18}$ reported on the synthesis of 7 and transformation of 7 to PGI_{2} type compounds by a one electron transfer reaction ${ }^{19}$ with ferrous sulfate. Recently, we have been studying endoperoxide 8 as a PGH_{2} model compound on the assumption that the $\mathrm{C}_{13}-\mathrm{C}_{14}$ double bond of the ω side chain of 2 would play an important role in the bioconversion of the bicyclic moiety of 2 into that of thromboxane A_{2}. Transformation of 8 to stereoisomers of 2,4-dihydroxy-6-phenyltetrahydropyran (9), a thromboxane B type compound, was achieved by the action of ferrous sulfate. ${ }^{20}$ In the course of synthesizing 8 , we have chosen the reaction of 1,3 -dibromo- 4 -phenylcyclopentane (23) with anhydrous hydrogen peroxide in the presence of silver trifluoroacetate, because among

[^2]Scheme I^{a}

${ }^{a}$ (a) Acetylacetone tert-butyldimethylsilyl enol ether, p - TsOH , DMF; (b) $\mathrm{Ph}_{2} \mathrm{CuLi}$, ether; (c) PhCu, n - $\mathrm{Bu}_{3} \mathrm{P}$, ether; (d) L -Selectride, THF (e) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) CsOAc , benzene, 18-crown-6; (g) $\mathrm{NaOMe}, \mathrm{MeOH}$; (h) $n-\mathrm{Bu}_{4} \mathrm{NF}$, THF; (i) 0.1 N HCl , MeCN ; (j) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (k) 2-chloro-3-ethylbenzoxazolium tetrafluoroborate, $\mathrm{Et}_{4} \mathrm{NBr}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
various methods for synthesis of endoperoxides, reaction of 1,3 -dibromocyclopentane derivatives with hydrogen peroxide in the presence of silver cation was used widely and seemed to be the most feasible. However, we obtained rearranged endoperoxide 25 as a major product instead of the desired endoperoxide 8 . In this article, we wish to report on the formation of "rearranged" endoperoxide 25 in the reaction of dibromide 23 and 24 with hydrogen peroxide.

Results and Discussion

1,3-Dibromo-4-phenylcyclopentanes 23 and 24 were synthesized from commercially available 4-hydroxycyclo-pent-2-en-1-one (10) as shown in Scheme I. The hydroxy group of 10 was protected with the tert-butyldimethylsilyl group by use of the tert-butyldimethylsilyl enol ether of acetylaceton ${ }^{21}$ in the presence of a catalytic amount of p-toluenesulfonic acid in dimethylformamide to give the corresponding silyl ether 11 in 83% yield. The yield is superior to that obtainable by silylation with tert-butyldimethylsilyl chloride under basic conditions. ${ }^{22}$ Reaction of the protected enone 11 with diphenyllithium cuprate ${ }^{23}$ gave the ketone 13 in 57% yield as a crystalline compound. Similarly, reaction of the enone $12,{ }^{24}$ available from cyclopentadiene, with phenylcopper in the presence of tri-n-butylphosphine ${ }^{25}$ afforded the ketone 14 in 71% yield, also as a crystalline compound. The trans relationship between the introduced phenyl and O-silyl group was confirmed by X-ray crystallographic analysis of diacetate 33 derived from 13 (vide infra). Reduction of the ketone 13 was done with various hydride reagents, but stereoselective formation of cis-diol derivative 15 was not successful. The results from NMR spectroscopic analysis of the hydride reduction products were as follows [reagent, the yield of alcohols, the ratio of 15 to 16]: sodium borohydride, $89 \%, 54: 46$; zinc borohydride, $82 \%, 73: 27$; diisobutylaluminum hydride, 91%, $54: 46$; L-Selectride

[^3]
${ }^{a}$ (a) Anhydrous $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CF}_{3} \mathrm{COOAg}$, ether; (b) $\mathrm{SnCl}_{2}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; (d) PhLi, THF, (e) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{AcOEt}$.
(Aldrich), 84\%, 75:25; lithium thexyllimonyl borohydride, 80\%, 80:20.

Although separation of the two epimers 15 and 16 by silica gel chromatography was very difficult, these were separated effectively after the next step. Treatment of the mixture of 15 and 16, prepared by L-Selectride reduction

$15 R=T B D M S$ $21 R=H$
of 13, with tetra- n-butylammonium fluoride gave unchanged silyl ether 16 and deprotected diol 21 , which were easily separated by silica gel chromatography. Recovered 16 was deprotected with 0.1 N hydrochloric acid in acetonitrile, yielding trans-diol 22. Moreover, the undesirable trans isomer 16 was inverted to cis compound 15 in the following manner. Alcohol 16 was mesylated with mesyl chloride and triethylamine, and the resulting mesylate 18 was treated with cesium acetate ${ }^{26}$ in the presence of 18 -crown-6 in refluxing benzene. The inverted acetate 19 thus obtained was methanolyzed with sodium methoxide in methanol to afford the additional alcohol 15. Thus, the preparative method leading to cis-diol 21 was established. Similarly, alcohol 15 was inverted to the epimer 16 via mesylate 17 and acetate 20. Stereochemistry of these isomers was assigned on the basis of hydrogen bonding observed by IR spectroscopy. ${ }^{27}$ Absorption bands arising from intramolecular hydrogen bonding were observed at 3538 and $3557 \mathrm{~cm}^{-1}$ in the IR spectra of compound 15 and 21 in carbon tetrachloride ($2.8 \times 10^{-4} \mathrm{M}$ solution), respectively. On the other hand, only absorptions arising from free hydroxyl were observed in the IR spectra of compound 16 and 22 at 3626 and $3619 \mathrm{~cm}^{-1}$, respectively. The above stereochemical assignments were confirmed by X-ray crystallographic analysis of diacetate 33, prepared from diol 21.

In the next stage, conversion of the cis-diol 21 to cisdibromide 23 was attempted. Treatment of cis-diol 21 with triphenylphosphine and carbon tetrabromide in dichloromethane gave two unstable dibromides in rather low yield
(26) Torisawa, Y.; Okabe, H.; Ikegami, S. Chem. Lett. 1984, 1555.
(27) Eliel, E. L.; Pillan, C. J. Am. Chem. Soc. 1955, 77, 3600.
(26% for the less polar compound, and 20% for the more polar one). On the other hand, bromination of cis-diol 21 with 2-chloro-3-ethylbenzoxazolium tetrafluoroborate, ${ }^{14,28}$ tetraethylammonium bromide, and triethylamine in dichloromethane afforded a single isomer of dibromide, identical with the more polar compound in the first bromination reaction. Although the stereochemistry of these two bromides is still uncertain, dibromide prepared in the latter reaction was assigned as the cis-dibromide 23 and the other isomer as the trans 24 from the analogy to bromination of prostaglandin $\mathrm{F}_{2 \alpha}$ by the same method. Treatment of mesylate 32, prepared from 21, with LiBr^{11} gave a mixture of 23 and 24 in lower yield.

Next, synthesis of endoperoxide 8 from dibromide 23 was attempted. Reaction of the dibromide 23 with anhydrous hydrogen peroxide ${ }^{29,30}$ in the presence of silver trifluoroacetate in ether at $0^{\circ} \mathrm{C}$ gave four unstable peroxides $8,25,26$, and 27 , which were positive to the ferrous thiocyanate ${ }^{31}$ and $N, N, N^{\prime}, N^{\prime}$-tetramethyl- p-phenylenediamine ${ }^{32}$ tests (Scheme II). The products were purified with silica gel chromatography at $0^{\circ} \mathrm{C}$. The desired endoperoxide 8 was obtained from the early fraction as a mixture with isomeric endoperoxide 25 in 35% yield, favoring 25 in a ratio of 1:6. Further purification of this mixture gave pure 25 as a colorless oil. The C_{4} bridgehead proton appeared as a broad singlet at 4.82 ppm in the NMR spectrum. The molecular ion was observed at m / z 176 in the mass spectrum. Reduction of the mixture of 25 and 8 with stannous chloride gave separable diols 28 and 21 , which were identical with authentic samples of 28 and 21, respectively. An authentic sample of diol 28 was prepared by the reaction of the enone 10 with 2 equiv of phenyllithium, followed by catalytic hydrogenation. Hydroperoxides 26 and 27 were isolated in 9% and 8% yield, respectively, from the latter fraction of the chromatography of the dibromide reaction products. Compounds 26 and 27 exhibited hydroperoxide proton NMR signals at 7.94 and 7.85 ppm , respectively. Molecular ions from these molecules were observed at $m / z 176$. IR spectra showed

[^4]Scheme III

absorption peaks arising from the hydroperoxy groups at $3510 \mathrm{~cm}^{-1}$. Reduction of the two peroxides 26 and 27 with sodium borohydride gave 3-phenylcyclopentenols 29 and 30 , respectively. Alcohol 29 was identified by comparison of its physical data with those published. ${ }^{33}$ An authentic sample of isomer 30 was prepared from known enone 31^{34} by sodium borohydride reduction.
Reaction of the other dibromide 24 with hydrogen peroxide in the presence of silver trifluoroacetate under exactly the same conditions as described above for 23 afforded the same products ($8,25,26$, and 27) in almost the same yields and distribution as those from 23. These findings suggest that the reactions proceeded through a common intermediate. The possible reaction pathways are shown in Scheme III. The reaction is likely initiated by hydroperoxide substitution of the bromine atom that is farthest from the phenyl group to form 37. This is likely because the other bromine is deactivated toward substitution due to the negative inductive effect of the phenyl group. The formation of ion pair 38 as the common intermediate would follow with a hydride shift leading to tertiary benzylic cation 39 as a major pathway. Intramolecular cyclization of 38 producing 8 would be a minor pathway. It was reported that, in the 2 -phenylcyclo-pent-1-yl carbenium system, phenyl coordination to the adjacent developing carbenium is not an important pathway and 1,2 -hydride shift predominates to form the benzylic cation. ${ }^{35}$ The cation 39 could lead to the formation of endoperoxide 25 and hydroperoxides 26 and 27 by intramolecular cyclization and deprotonation, respectively.

Although endoperoxide 8 was not obtained in a pure form in the above reactions, it was identified by comparison with the authentic material prepared in a different way as shown in Scheme IV. Thus, cis-diol 21 was mesylated with 2 equiv of mesyl chloride and triethylamine. The mesylate 32 thus obtained was treated with excess cesium acetate in the presence of 18 -crown- 6 in refluxing toluene to give the inverted diacetate 34. Methanolysis of the diacetate 34 to diol 35 and treatment of the resulting diol 35 with triflic anhydride in pyridine gave unstable bistriflate 36. Without purification, the bistriflate 36 was subjected to peroxide transfer reaction ${ }^{4}$ with bis(tri-nbutyltin) peroxide, prepared from tri- n-butyltin methoxide and anhydrous hydrogen peroxide. This yielded a crystalline endoperoxide 8 of $\mathrm{mp} \mathrm{40-42}{ }^{\circ} \mathrm{C}$ (from petroleum ether) as the sole isolable product, although the yield was

[^5]
${ }^{a}$ (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, py; (c) $\mathrm{CsOAc}, 18$-crown-6, toluene; (d) $\mathrm{NaOMe}, \mathrm{MeOH}$; (e) $\mathrm{Tf}_{2} \mathrm{O}$, py; (f) $\left(n-\mathrm{Bu}_{3} \mathrm{SnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$.
not satisfactory (6%). The molecular ion of 8 was observed at $m / z 176$ in the mass spectrum. Bridgehead protons appeared at 4.66 and 4.85 ppm as broad singlets in the NMR spectrum. Reduction of this peroxide 8 with stannous chloride afforded diol 21.
In conclusion, the reaction of 1,3 -dibromo- 4 -phenylcyclopentane (23) (prepared from the enone 10 in a stereocontrolled manner) or its stereoisomer 24 with hydrogen peroxide in the presence of silver trifluoroacetate produced 1-phenyl-2,3-dioxabicyclo[2.2.1]heptane (25) as a major product, accompanied with the expected 5 -phenyl-2,3dioxabicyclo[2.2.1]heptane (8) and hydroperoxides 26 and 27 as minor products. The formation of ion pair 38 and subsequent hydride shift to benzylic cation 39 is proposed as the common reaction pathway in these reactions.

Experimental Section

Melting points were determined on a Yanagimoto micro apparatus and are uncorrected. A Hitachi $260-10$ or JASCO-J-0056 spectrophotometer was used to obtain IR spectra. NMR spectra were obtained with a Varian EM-390 (90 MHz) or Varian XL-200 (200 MHz) spectrometer in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal reference unless otherwise mentioned. Mass spectra were determined with a Hitachi RMU-8 spectrometer (70 eV). Elemental analyses were performed by the analytical department of these laboratories. Lobar Columns (Merck, silica gel 60, 230-400 mesh) were used for column chromatography with a FMI RP-SY Lab Pump and a Waters R-403 differential refractometer. TLC plates were purchased from E. Merck and peroxides were detected by a spray of either ferrous thiocyanate or $N, N, N^{\prime}, N^{\prime}$-tetra-methyl-p-phenylenediamine dihydrochloride. HPLC analyses were carried out on a LiChrosorb SI 60 column (Merck, $10 \mu \mathrm{~m}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) in normal-phase operation and a Develosil ODS-7 column (Nomura Chemical Co., $7 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) in reverse-phase operation. This unit contained a Reodyne injector, a Knauer pump, and an Oyobunko Uvilog UV detector.
4-[(tert-Butyldimethylsilyl)oxy]cyclopent-2-en-1-one (11). A mixture of 4-hydroxycyclopent-2-en-1-one (10) ($2.08 \mathrm{~g}, 21.24$ mmol), acetylacetone tert-butyldimethylsilyl enol ether (5.00 g ,
23.36 mmol), $p-\mathrm{Ts} \mathrm{OH}$ ($100 \mathrm{mg}, 0.53 \mathrm{mmol}$), and DMF (21 mL) was stirred at room temperature for 15 h . The mixture was poured into aqueous NaHCO_{3} and extracted with hexane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Chromatography of the residue with hexane/ $\mathrm{AcOEt}(80 / 20)$ as the eluent gave 11 (3.71 $\mathrm{g}, 83 \%$) as a colorless oil: IR (film) $1715 \mathrm{~cm}^{-1}$; NMR $\delta 7.34$ (1 $\left.\mathrm{H}, \mathrm{dd}, J=2,7 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 6.10\left(1 \mathrm{H}, \mathrm{dd}, J=1,7 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 4.93$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.57\left(1 \mathrm{H}, \mathrm{dd}, J=6,19 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 2.04(1 \mathrm{H}$, dd, $\left.J=3,19 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, which was identical with a sample prepared by the reported ${ }^{22}$ procedure.
($3 R^{*}, 4 S^{*}$)-3-[(tert-Butyldimethylsilyl)oxy]-4-phenyl-cyclopentan-1-one (13). A solution of the enone $11(5.30 \mathrm{~g}, 25$ mmol) in ether (50 mL) was added to a stirred solution of $\mathrm{Ph}_{2} \mathrm{CuLi}$, prepared from $\mathrm{CuI}(9.50 \mathrm{~g}, 50 \mathrm{mmol})$ and $\mathrm{PhLi}(1.8 \mathrm{M}$ in eth-er-cyclohexane, $55.5 \mathrm{~mL}, 100 \mathrm{mmol}$), at $-70^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with hexane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed. Elution with hexane/AcOEt (9/1) afforded $13(4.12 \mathrm{~g}, 57 \%): \mathrm{mp} 53-54{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1742 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}$, br s, $\mathrm{ArH} \times 5), 4.32(1 \mathrm{H}$, $\left.\mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 3.50-3.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 3.00-2.11(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and -0.12 and -0.21 (each 3 H , each s, SiMe_{2}); MS, $m / z 275\left(\mathrm{M}^{+}-\mathrm{Me}\right), 233\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: $\mathrm{C}, 70.30 ; \mathrm{H}, 9.02$. Found: $\mathrm{C}, 70.02 ; \mathrm{H}, 9.06$.
($3 \boldsymbol{R}^{*}, 4 \boldsymbol{S}^{*}$)-3-(tert-Butyloxy)-4-phenylcyclopentan-1-one (14). Under an Ar atmosphere, n - $\mathrm{Bu}_{3} \mathrm{P}(22.88 \mathrm{~mL}, 92 \mathrm{mmol})$ was added to a stirred suspension of $\mathrm{CuI}(7.60 \mathrm{~g}, 40 \mathrm{mmol})$ in ether $(320 \mathrm{~mL})$ at room temperature. $\mathrm{PhLi}(1.9 \mathrm{M}$ in ether-cyclohexane, $21.06 \mathrm{~mL}, 40 \mathrm{mmol}$) was slowly added to the above mixture at $-78^{\circ} \mathrm{C}$. After 0.5 h , a solution of the enone $12(6.16 \mathrm{~g}, 40 \mathrm{mmol})$ in ether was added to this solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added at $-40^{\circ} \mathrm{C}$. The layers were separated at room temperature. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, giving an oil (37.1 g). Silica gel ($70-230$ mesh) chromatography with hexane/AcOEt ($80 / 20$) as the eluent yielded $14(6.606 \mathrm{~g}, 71 \%)$: $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{~cm}^{-1}$; NMR $\delta 4.12$ $\left(1 \cdot \mathrm{H}, \mathrm{dd}, J=7,14 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 3.32\left(1 \mathrm{H}, \mathrm{dt}, J=8,8 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right)$, 2.96-2.02 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}$), and $1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 77.55 ; \mathrm{H}, 8.68$. Found: C, $77.73 ; \mathrm{H}, 8.72$.

Reduction of Ketone 13 with L-Selectride. L-Selectride (1.0 M in THF, 17.0 mL) was added to a stirred solution of the ketone $13(4.10 \mathrm{~g}, 14.138 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the solution was stirred for 30 min . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$, 10% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3.0 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then extracted with hexane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed with hexane/AcOEt (80/20) as the eluent to yield 15 and 16 ($3.46 \mathrm{~g}, 84 \%$), in a ratio of $75: 25$, which was used in the next step without separation.
($1 R^{*}, 3 R^{*}, 4 S^{*}$)-3-[(tert-Butyldimethylsilyl)oxy]-4-phenylcyclopentan-1-ol (15). A mixture of the acetate 19 (14 $\mathrm{mg}, 0.042 \mathrm{mmol}$), NaOMe ($4.5 \mathrm{mg}, 0.084 \mathrm{mmol}$), and MeOH (1.0 mL) was stirred at room temperature for $1 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added and the layers were separated. The organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Chromatography of the residue with hexane/AcOEt $(80 / 20)$ as the eluent afforded 15 ($9 \mathrm{mg}, 73 \%$) as a colorless oil: $\operatorname{IR}\left(\mathrm{CCl}_{4}\right)$ 3636 and $3538 \mathrm{~cm}^{-1}$; NMR $\delta 7.40-7.10(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 4.60-4.25$ and 4.25-4.00 (each 1 H , each m, $\mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}$), $3.50-3.20(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.65-1.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and $-0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \mathrm{MS}, m / z 277\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$.
($1 S^{*}, 3 R^{*}, 4 S^{*}$)-3-[(tert-Butyldimethylsilyl)oxy]-4-phenylcyclopentan-1-ol (16) and ($1 R^{*}, 3 R^{*}, 4 S^{*}$)-4-Phenyl-cyclopentane-1,3-diol (21). (a) n - $\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, 13.01 mL) was added to a solution of the mixture of alcohols 15 and $16(3.80 \mathrm{~g}, 13.01 \mathrm{mmol})$ in THF (38 mL) at room temperature. After stirring for 3 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed. Elution with hexane/AcOEt ($85 / 15$) gave unreacted 16 ($239 \mathrm{mg}, 6 \%$): colorless oil; IR (CCl_{4}) $3626 \mathrm{~cm}^{-1}$; NMR $\delta 7.32(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH} \times 5), 4.61-4.40(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{1}-\mathrm{H}\right), 4.40-4.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.30-2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.70-1.60$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and -0.20 and -0.28 (each 3 H , each s, SiMe_{2}). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$: C, 69.81; H, 9.65. Found: C, 69.36; H, 9.37. Elution with AcOEt afforded
diol 21 ($1.399 \mathrm{~g}, 58 \%$): $\mathrm{mp} 81-82^{\circ} \mathrm{C}(\mathrm{AcOEt} /$ hexane $)$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right)$ 3619 and $3557 \mathrm{~cm}^{-1}$; NMR $\delta 7.25(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} \mathrm{H} \times 5), 4.60-4.35$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 4.35-4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.50-3.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right)$, 2.80 and 2.60 (each 1 H , each br s, $\mathrm{OH} \times 2$), 2.55-1.66 ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right) ; \mathrm{MS}, m / z 178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13; H, 7.92. Found: C, 73.99; H, 7.80.
(b) Acetate $20(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ was treated with NaOMe ($7.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature for $1 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added and the layers were separated. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was chromatographed with hexane/ $\mathrm{AcOEt}(85 / 15)$ to give 16 ($19 \mathrm{mg}, 54 \%$), which was identical with the sample described in (a).
($\left.1 R^{*}, 3 R^{*}, 4 S^{*}\right)$-3-[(tert-Butyldimethylsilyl)oxy]-1-[(me-thylsulfonyl)oxy]-4-phenylcyclopentane (17). $\mathrm{Et}_{3} \mathrm{~N}$ (51 mg , 0.5 mmol) and $\mathrm{MsCl}(57 \mathrm{mg}, 0.5 \mathrm{mmol})$ were added to a stirred solution of the mixture of epimers 15 and $16(120 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 15 h and then extracted with n-hexane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane, yielding $17(82 \mathrm{mg}, 54 \%)$: $\mathrm{mp} 85-86{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1355 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH} \times 5), 5.44-5.26$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 4.22-3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.34-3.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right)$, $3.12(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and -0.18 and -0.20 (each 3 H , each $\mathrm{s}, \mathrm{SiMe}_{2}$); MS, $m / z 313\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSi}: \mathrm{C}, 58.34 ; \mathrm{H}, 8.16$. Found: C, $58.11 ; \mathrm{H}, 8.01$.
($1 \boldsymbol{S}^{*}, 3 \boldsymbol{R}^{*}, 4 \boldsymbol{S}^{*}$)-3-[(tert-Butyldimethylsilyl)oxy]-1-[(me-thylsulfonyl)oxy]-4-phenylcyclopentane (18). $\mathrm{Et}_{3} \mathrm{~N}$ (69 mg , 1.67 mmol) and $\mathrm{MsCl}(191 \mathrm{mg}, 1.67 \mathrm{mmol})$ were added to a stirred solution of the alcohol $16(407 \mathrm{mg}, 1.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 2 h , the mixture was washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. The residue was chromatographed with hexane/AcOEt $(80 / 20)$ as the eluent, yielding $18(430 \mathrm{mg}, 84 \%)$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 1355 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} \mathrm{H} \times 5), 5.40-5.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right)$, 4.35-4.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}$), $3.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.10-1.90(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{4}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 0.76\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and -0.20 and -0.28 (each 3 H , each s, SiMe_{2}); MS, $m / z 313\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSi}: \mathrm{C}, 58.34 ; \mathrm{H}, 8.16$. Found: C, $58.20 ; \mathrm{H}, 8.07$.
($1 R^{*}, 3 R^{*}, 4 S^{*}$)-1-Acetoxy-3-[(tert-butyldimethylsilyl)-oxy]-4-phenylcyclopentane (19). A mixture of the mesylate 18 ($400 \mathrm{mg}, 1.081 \mathrm{mmol}$), $\mathrm{CsOAc}(623 \mathrm{mg}, 3.243 \mathrm{mmol}$), 18 -crown- 6 ($143 \mathrm{mg}, 0.54 \mathrm{mmol}$), and benzene (10 mL) was refluxed for 2.5 h. The cooled mixture was extracted with hexane and washed with water, and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and chromatography of the residue with hexane/AcOEt (90/10) as the eluent gave $19(354 \mathrm{mg}, 98 \%)$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~cm}^{-1}$; NMR $\delta 7.35(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH} \times 5)$, $5.40-5.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 4.20-3.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.40-3.05(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.75-1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, and -0.20 and -0.30 (each 3 H , each s, SiMe_{2}); MS, $m / z 277\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$.
($1 S^{*}, 3 R^{*}, 4 S^{*}$)-1-Acetoxy-3-[(tert-butyldimethylsilyl)-oxy]-4-phenylcyclopentane (20). Mesylate 17 ($74 \mathrm{mg}, 0.2 \mathrm{mmol}$) was treated with CsOAc as above to yield the acetate $20(41 \mathrm{mg}$, 61%) as a colorless oil: IR (film) $1740 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}$, $\mathrm{brs}, \mathrm{ArH} \times 5), 5.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 4.34-3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right)$, $3.15-1.75\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{4}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 0.78(9$ $\mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), and -0.18 and -0.28 (each 3 H , each s, SiMe_{2}); MS, $m / z 277\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$.
($1 S^{*}, 3 R^{*}, 4 S^{*}$)-4-Phenylcyclopentane-1,3-diol (22). A mixture of the silyl ether $16(380 \mathrm{mg}, 1.30 \mathrm{mmol}), 0.1 \mathrm{~N} \mathrm{HCl}(1.0$ mL), and MeCN (3.8 mL) was stirred at room temperature for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The organic layer was washed with aqueous NaHCO_{3}, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Chromatography of the residue with AcOEt gave 22 ($185 \mathrm{mg}, 80 \%$): mp 103-104 ${ }^{\circ} \mathrm{C}$ (AcOEt); IR (CCl_{4}) $3623 \mathrm{~cm}^{-1}$; NMR $\delta 7.25(5 \mathrm{H}, \mathrm{brs}, \mathrm{ArH} \times 5), 4.50-4.15(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{\mathrm{H}}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}$), 2.95-1.56 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{4}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{2}$), and 2.75 (2 $\mathrm{H}, \mathrm{brs}, \mathrm{OH} \times 2)$; MS, $m / z 178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13 ; H, 7.92. Found: C, 73.80 ; H, 7.85 .
($\mathbf{1} S^{*}, 3 S^{*}, 4 S^{*}$)-1,3-Dibromo-4-phenylcyclopentane (23) and ($1 S^{*}, 3 R^{*}, 4 S^{*}$)-1,3-Dibromo-4-phenylcyclopentane (24). (a) A mixture of the diol $21(18 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(104 \mathrm{mg}, 0.4$ $\mathrm{mmol}), \mathrm{CBr}_{4}(66 \mathrm{mg}, 0.2 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred at room temperature for 15 h . The solvent was evaporated and
the residue was chromatographed with hexane/ $\mathrm{AcOEt}(90 / 10)$, yielding $24(6 \mathrm{mg}, 29 \%)$ as an oil: NMR $\delta 7.40-7.10(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ $\times 5), 4.85-4.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 3.90-3.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right)$, $3.40-2.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right) ; \mathrm{MS}, m / z 302,304\left(\mathrm{M}^{+}\right)$. Further elution gave 23 ($8.0 \mathrm{mg}, 26 \%$): mp $56-57^{\circ} \mathrm{C}$; NMR $\delta 7.32(5 \mathrm{H}$, $\mathrm{brs}, \mathrm{ArH} \times 5), 4.70-4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right)$, and $3.40-2.60(5$ $\mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{4}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{2}$; MS, $m / z 302,304\left(\mathrm{M}^{+}\right)$.
(b) A solution of the diol $21(36 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ mL) was added to a stirred mixture of 2 -chloro-3-ethylbenzoxazolium tetrafluoroborate ($135 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Et}_{4} \mathrm{NBr}(84 \mathrm{mg}$, $0.4 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(51 \mathrm{mg}, 0.5 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Chromatography with hexane/AcOEt (90/10) of the residue afforded 23 ($24 \mathrm{mg}, 39 \%$), which was identical with the sample described in method (a).
($1 R^{*}, 4 R^{*}, 5 S^{*}$)-5-Phenyl-2,3-dioxabicyclo[2.2.1]heptane (8), ($1 S^{*}, 4 \boldsymbol{R}^{*}$)-1-Phenyl-2,3-dioxabicyclo[2.2.1]heptane (25), 1-Hydroperoxy-3-phenylcyclopent-3-ene (26), and 1-Hydro-peroxy-3-phenylcyclopent-2-ene (27). (a) A solution of anhydrous $\mathrm{H}_{2} \mathrm{O}_{2}\left(1.83 \mathrm{M}\right.$ in ether, 5 mL) and $\mathrm{CF}_{3} \mathrm{COOAg}(530 \mathrm{mg}$, 2.4 mmol) was added to a solution of the bromide 23 (or 24) (183 $\mathrm{mg}, 0.6 \mathrm{mmol})$ in ether $(1.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$, hexane was added to the mixture. The organic layer was washed with ice-water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed at $0^{\circ} \mathrm{C}$. Elution with hexane/ AcOEt $(90 / 10)$ gave a mixture of 8 and $25(38 \mathrm{mg}, 35 \%, 8 / \mathbf{2 5}=$ $1 / 6$ by NMR). Purification of the mixture by repeated chromatography gave 25 as a colorless oil: NMR $\delta 7.55-7.15$ (5 H , $\mathrm{m}, \mathrm{ArH} \times 5), 4.82\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{C}_{4}-\mathrm{H}\right)$, and $2.70-1.85\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\times 3)$; MS, $m / z 176\left(\mathrm{M}^{+}\right)$. Further elution with the same solvent gave 26 ($10 \mathrm{mg}, 9 \%$) as a colorless oil: IR (CHCl_{3}) $3510 \mathrm{~cm}^{-1}$; NMR $\delta 7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OOH}), 7.55(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 6.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.3 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 5.15-4.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right)$, and $3.02-2.65(4 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5} \cdot \mathrm{H}_{2}$); MS, $m / z 176\left(\mathrm{M}^{+}\right)$. Further elution gave 27 (8.0 $\mathrm{mg}, 8 \%$) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 3510 \mathrm{~cm}^{-1}$; NMR $\delta 7.85$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OOH}), 7.55-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 6.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}\right)$, $5.42-5.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right)$, and $3.10-1.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right)$; MS, $m / z 176\left(\mathrm{M}^{+}\right)$.
(b) Triflic anhydride ($338 \mathrm{mg}, 1.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$) was added to a stirred solution of the diol $35(89 \mathrm{mg}, 0.5 \mathrm{mmol})$ and pyridine ($95 \mathrm{mg}, 1.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give ($\mathbf{1 S}{ }^{*}, \mathbf{2 S}{ }^{*}, \mathbf{4 S}{ }^{*}$)-1-phenyl-2,4-bis[$[($ trifluoromethyl) sulfonyl]oxy]cyclopentane (36) as an unstable material, which was used in the next step without purification: NMR $\delta 7.33(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH} \times 5), 5.80-5.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$, $3.50-3.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 2.90-2.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right)$. A solution of 36 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added to a solution of $\left.\left(n-\mathrm{Bu}_{3} \mathrm{SnO}\right)\right)_{2}$, prepared from $n-\mathrm{Bu}_{3} \mathrm{SnOMe}(321 \mathrm{mg}, 1 \mathrm{mmol})$ and anhydrous $\mathrm{H}_{2} \mathrm{O}_{2}(1.83 \mathrm{M}$ in ether, 0.6 mL$)$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, the solvent was evaporated and the residue was chromatographed with hexane/ $\operatorname{AcOEt}(90 / 10)$ at $0{ }^{\circ} \mathrm{C}$, yielding $8(5 \mathrm{mg}, 6 \%)$: NMR $\delta 7.55-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ $\times 5), 4.85$ and 4.66 (each 1 H , each br s, $\left.\mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 3.55-3.30$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5}-\mathrm{H}\right), 2.55-1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}_{2}, \mathrm{C}_{7}-\mathrm{H}_{2}\right) ; \mathrm{MS}, m / z 176$ $\left(\mathrm{M}^{+}\right)$, which was identical with the sample described above.
($1 \boldsymbol{S}^{*}, 3 \boldsymbol{R}^{*}$)-1-Phenylcyclopentane-1,3-diol (28). (a) PhLi (2.0 M in ether-cyclohexane, 10 mL) was added dropwise to a stirred solution of the enone $10(980 \mathrm{mg}, 10 \mathrm{mmol})$ in THF (30 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 0.5 h. The mixture was poured on ice, acidified with AcOH , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give 1-phenylcyclo-pent-2-ene-1,4-diol ($1.05 \mathrm{~g}, 60 \%$): $\mathrm{mp} 94-95^{\circ} \mathrm{C}$; IR (CHCl_{3}) 3560 cm^{-1}; NMR $\delta 7.32(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \operatorname{ArH} \times 5), 6.03(2 \mathrm{H}, \mathrm{s}$, vinyl $\mathrm{H} \times$ 2), 4.86-4.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}$), 3.75 and 3.52 (each 1 H , each br s, $\mathrm{OH} \times 2), 2.62\left(1 \mathrm{H}, \mathrm{dd}, J=6,15 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 2.12(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.3,15 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 74.97 ; \mathrm{H}, 6.86$. Found: C, 74.84; H, 6.96. A mixture of the diol described above ($352 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{PtO}_{2}(23 \mathrm{mg})$ in AcOEt (20 mL) was stirred under H_{2} atmosphere (1 atm) at room temperature for 0.5 h . The catalyst was removed by filtration through a pad of Celite and the filtrate was evaporated. The residue was recrystallized from ether/hexane to give 28 ($306 \mathrm{mg}, 86 \%$): mp $71-72^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$

3570 and $3390 \mathrm{~cm}^{-1}$; NMR $\delta 7.55-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 4.66-4.32$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.00(2 \mathrm{H}, \mathrm{brs}, \mathrm{OH} \times 2), 2.45-1.95\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\times 3)$; MS, $m / z 178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 74.13$; H, 7.92. Found: C, 74.03; H, 7.98.
(b) A mixture of the endoperoxides 8 and $25(38 \mathrm{mg}, 0.216$ mmol) was added to a stirred mixture of $\mathrm{EtOH}(1.0 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7.0,1.0 \mathrm{~mL}$), and $\mathrm{SnCl}_{2}(60 \mathrm{mg}, 0.316 \mathrm{mmol})$ at $5^{\circ} \mathrm{C}$. After 1 h , the mixture was extracted with ether, and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(96 / 4)$ to yield 28 (13 $\mathrm{mg}, 34 \%$), which was identical with authentic material prepared in (a). Further elution gave diol $21(1.0 \mathrm{mg}, 3 \%)$, which was identical with authentic material described above.

1-Hydroxy-3-phenylcyclopent-3-ene (29). $\mathrm{NaBH}_{4}(1.0 \mathrm{mg}$, 0.026 mmol) was added to a stirred solution of the hydroperoxide $26(10 \mathrm{mg}, 0.057 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the mixture was washed with water. The organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated, and chromatographed with hexane/AcOEt (50/50) to yield $29(6 \mathrm{mg}, 66 \%)$: mp $80-81^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{33} \mathrm{mp} 80-82^{\circ} \mathrm{C}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3570 \mathrm{~cm}^{-1}$; NMR δ 7.55-7.20 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5$), $6.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right), 4.80-4.50(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 3.20-2.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right) ; \mathrm{MS}, m / z 160\left(\mathrm{M}^{+}\right)$.

1-Hydroxy-3-phenylcyclopent-2-ene (30). (a) The hydroperoxide 27 ($8 \mathrm{mg}, 0.046 \mathrm{mmol}$) was treated with NaBH_{4} as above to give 30 ($5 \mathrm{mg}, 69 \%$): $\mathrm{mp} 98-99^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3560 \mathrm{~cm}^{-1}$; NMR $\delta 7.55-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 5), 6.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}_{2}-\mathrm{H}\right), 4.94(1 \mathrm{H}$, br s, $\left.\mathrm{C}_{1}-\mathrm{H}\right)$, and $3.10-1.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right) ; \mathrm{MS}, m / z 160$ $\left(\mathrm{M}^{+}\right)$.
(b) $\mathrm{NaBH}_{4}(14 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added to a solution of the enone $31^{34}(60 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min of stirring, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Chromatography of the residue with hexane/AcOEt ($50 / 50$) afforded 30 (54 mg , 89%), which was identical with the sample described in (a).
($1 R^{*}, 3 R^{*}, 4 S^{*}$)-1,3-Bis[(methylsulfonyl)oxy]-4-phenylcyclopentane (32). $\mathrm{Et}_{3} \mathrm{~N}(1.149 \mathrm{~g}, 11.38 \mathrm{mmol})$ and $\mathrm{MsCl}(1.303$ $\mathrm{g}, 11.38 \mathrm{mmol})$ were added to a solution of the diol $21(844 \mathrm{mg}$, $4.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . The mixture was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was recrystallized from AcOEt/hexane to yield $32(1.377 \mathrm{~g}, 87 \%)$: mp $106-107^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1360,1330$, and $1180 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}$, br s, ArH $\times 5$), $5.40-5.20(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 5.10-4.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3}-\mathrm{H}\right), 3.80-3.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 3.04$ and 3.68 (each 3 H , each s, $\mathrm{SMe} \times 2$), and $3.00-2.00\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}\right.$, $\left.\mathrm{C}_{5}-\mathrm{H}_{2}\right)$; MS, $m / z 238\left(\mathrm{M}^{+}-\mathrm{MeSO}_{3} \mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, $46.69 ; \mathrm{H}, 5.43 ; \mathrm{S}, 19.18$. Found: $\mathrm{C}, 46.31 ; \mathrm{H}, 5.29$; S, 18.92 .
($1 R^{*}, 3 R^{*}, 4 S^{*}$)-1,3-Diacetoxy-4-phenylcyclopentane (33). A mixture of the diol $21(60 \mathrm{mg}, 0.337 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and pyridine (1.0 mL) was allowed to stand at room temperature for 15 h and evaporated. Chromatography of the residue with hexane/AcOEt ($80 / 20$) gave $33(85 \mathrm{mg}, 96 \%): \mathrm{mp} 52-53^{\circ} \mathrm{C}$ (eth$\mathrm{er} /$ hexane $)$; IR $\left(\mathrm{CHCl}_{3}\right) 1725 \mathrm{~cm}^{-1}$; NMR $\delta 7.26(5 \mathrm{H}$, br s, ArH $\times 5), 5.35-4.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 3.46(1 \mathrm{H}, \mathrm{dt}, J=7,9 \mathrm{~Hz}$, $\mathrm{C}_{4}-\mathrm{H}$), 2.90-1.60 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}$), and 2.08 and 1.98 (each 3 H , each $\mathrm{s}, \mathrm{Ac} \times 2)$; MS, $m / z 203\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 68.68; H, 6.92. Found: C, 68.66; H, 6.84 .
($1 S^{*}, \mathbf{3 S} S^{*}, 4 S^{*}$)-1,3-Diacetoxy-4-phenylcyclopentane (34). A mixture of the bismesylate 32 ($1.50 \mathrm{~g}, 4.49 \mathrm{mmol}$), $\mathrm{CsOAc}(5.12$ $\mathrm{g}, 26.95 \mathrm{mmol}), 18$-crown-6 ($0.59 \mathrm{~g}, 2.25 \mathrm{mmol}$), and toluene (45 mL) was refluxed for 8 h . The mixture was diluted with hexane, washed with water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and chromatography with hexane/AcOEt (80/20) afforded 34 (759 $\mathrm{mg}, 65 \%$) as an oil: IR (film) $1730 \mathrm{~cm}^{-1}$; NMR $\delta 7.30(5 \mathrm{H}$, br $\mathrm{s}, \mathrm{ArH} \times 5), 5.42-5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 3.36-3.04(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 2.75-1.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 2.06$ and 1.80 (each 3 H , each s, Ac $\times 2$); MS, $m / z 262\left(\mathrm{M}^{+}\right)$.
($1 S^{*}, 3 S^{*}, 4 S^{*}$)-4-Phenylcyclopentane-1,3-diol (35). A mixture of the diacetate 34 ($759 \mathrm{mg}, 2.89 \mathrm{mmol}$), NaOMe (375 $\mathrm{mg}, 6.95 \mathrm{mmol}$), and $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at room temperature for $1 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added to the mixture and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was recrystallized from AcOEt , yielding $35(418 \mathrm{mg}$, $81 \%): \operatorname{mp~} 124-125^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3560 \mathrm{~cm}^{-1}$; NMR $\delta 7.32(5 \mathrm{H}$, br s, ArH $\times 5$), $4.52-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 3.30-3.00(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.70-1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{2}\right), 2.05$ and 1.75 (each

1 H , each br s, $\mathrm{OH} \times 2$); MS, $m / z 178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 74.13 ; \mathrm{H}, 7.92$. Found: C, 73.80; H, 7.85.

X-ray Results. Crystal data of compound 33: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$, MW $=262.3$, monoclinic, space group $P 2_{1} / c, a=10.924$ (7) $\AA, b=8.125$ (5) $\AA, c=17.187$ (9) $\AA, \beta=112.82$ (5) ${ }^{\circ}, V=1406$ (1) $\AA^{3}, Z=4$, $D_{\mathrm{c}}=1.239 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods and refined by a block-diagonal least-squares technique to $R=$
0.048 for 2076 reflections, exclusing the hydrogen atoms of one of the methyl groups.

Supplementary Material Available: Perspective view, tables of atomic coordinates, thermal parameters, bond lengths, and bond angles for compound 33 (5 pages). Ordering information is given on any current masthead page.

Notes

Regiochemistry of Formation, Stereochemistry, and Interconversion of α-tert-Butyl(4- or 5-nitro-N-methyl-2-pyrrolyl)methyl Sulfones and Sulfinates ${ }^{1}$
Trevor W. Hambley, ${ }^{\dagger}$ Michael C. Harsānyi, ${ }^{\ddagger}$ and Robert K. Norris*, ${ }^{*}$
Departments of Organic Chemistry and Inorganic Chemistry, The University of Sydney, 2006, N.S.W., Australia
Received December 7, 1987

In a recent paper we reported that the chlorides 1 and 2 reacted with nucleophiles or with methanol to give substitution products by an $\mathrm{S}_{\mathrm{N}} 1$ process. ${ }^{2}$ When we treated the above chlorides with sodium p-toluenesulfinate (3), complex reaction products resulted, and it appeared that simple substitution reactions were not taking place. We now report the results of the reaction of 1 and 2 with the salt 3.

Results and Discussion

Reaction of the Chlorides 1 and 2 with Sodium p-Toluenesulfinate (3). Treatment of the chloride 1 with the salt 3 in DMF at $60^{\circ} \mathrm{C}$ for 15 min gave a mixture of four compounds, as judged from the N-methyl and tertbutyl resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture, in ca. 92% yield [estimated by reference to added TNT (2,4,6-trinitrotoluene)]. On the basis of

R^{1}	R^{2}	X
NO_{2}	H	Cl
H	NO_{2}	Cl
NO_{2}	H	OH
NO_{2}	H	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$
NO_{2}	H	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$
H	NO_{2}	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$
H	NO_{2}	OH
H	NO_{2}	OCHO

spectroscopic and chemical evidence presented below these products were assigned as the alcohol $4(6 \%)$, the sulfone $5(28 \%)$, and the two diastereomeric sulfinic esters 6a (36%) and $\mathbf{6 b} \mathbf{~ (~} 22 \%$). Duplicate reactions varied slightly

[^6]
in the relative proportion of these products ($\pm 4 \%$). The benzylic and aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum obtained from a typical mixture resulting from this reaction is given in Figure 1a. The reaction products on standing for ca. 17 h in CDCl_{3} at room temperature changed into a simple mixture of the alcohol $4(20 \%)$ and the sulfone $5(71 \%)$. The sulfone 5 could be isolated readily from any reaction mixture resulting from treatment of 1 with 3 so long as the mixture was left for $15-20 \mathrm{~h}$ before recrystallization. Sulfone 5 had the required elemental composition and was unambiguously prepared from the sulfide 7 (previously isolated from the reaction of chloride 1 with p-toluenethiolate ion) ${ }^{2}$ by oxidation with m-chloroperbenzoic acid in dichloromethane. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 is given in Figure 1b. In previous studies in our laboratories, it has been found that sulfones of the type $\mathrm{Ar}^{\prime} \mathrm{CH}-t$ - $\mathrm{BuSO}_{2} \mathrm{Ar}$ exhibit dynamic ${ }^{1} \mathrm{H}$ NMR phenomena around the $\mathrm{Ar}^{\prime}-\mathrm{CH}$ bond. ${ }^{3-5}$ This sulfone did not exhibit DNMR effects, and it appeared reasonable that it was "locked" into the less hindered conformation 5a, in which the N-methyl group was remote from the bulky substituents on the benzylic carbon. This conclusion was confirmed by NOE experiments. Irradiation of the benzylic proton (H1) gave significant enhancement of the signals from the N-methyl group (9.7%), the tert-butyl group (10.6%), and also the signal from the two protons on the benzene ring ortho to the SO_{2} group (6.1%). Irradiation of the N-Me group gave a 3.7% enhancement of H 1 , a 3.3% of H^{\prime} and a 0.8% enhancement of the signal for the two ring protons ortho to the sulfonyl group respectively. Irradiation of the tert-butyl group enhancement of the signal for $\mathrm{H} 1(2.2 \%)$ and $\mathrm{H}^{\prime}(2.3 \%)$. The significant interactions of H 1 and the N -Me group with

[^7]
[^0]: ${ }^{\dagger}$ All compounds described in this paper are racemic, and one series of enantiomers is depicted for convenience.
 ${ }^{\ddagger}$ Laboratory of Organic Chemistry.
 \& Laboratory of Physical Chemistry.

[^1]: (1) Hamberg, M.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 899. Also see: Hamberg, M.; Svensson, J.; Wakabayashi, T.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 345.
 (2) Review: Porter, N. A. In Free Radicals in Biology; Pryor, W. A., Ed.; Academic: New York, 1980; Vol. IV, pp 261-294.
 (3) Review: Saito, I.; Nittala, S. S. In The Chemistry of Functional Groups, Peroxides; Patai, S., Ed.; Wiley: New York, 1983; pp 311-374.
 (4) Salomon, R. G.; Salomon, M. F. J. Am. Chem. Soc. 1977, 99, 3501.
 (5) Porter, N. A.; Gilmore, D. W. J. Am. Chem. Soc. 1977, 99, 3503.
 (6) Adam, W.; Eggelte, H. J. J. Org. Chem. 1977, 42, 3987.
 (7) Bloodworth, A. J.; Hargreaves, N. Tetrahedron Lett. 1987, 28, 2783.

[^2]: (8) Adam, W.; Hannemann, K.; Wilson, R. M. J. Am. Chem. Soc. 1986, 108, 929. Wilson, R. M.; Schnapp, K. A.; Merwin, R. K.; Ranganathan, R.; Moats, D. L.; Conrad, T. T. J. Org. Chem. 1986, 51, 4028.
 (9) O'Connor, D. E.; Mihelich, E. D.; Coleman, M. C. J. Am. Chem. Soc. 1981, 103, 223; 1984, 106, 3577.
 (10) Corey, E. J.; Shimoji, K.; Shih, C. J. Am. Chem. Soc. 1984, 106, 6425. Corey, E. J.; Shih, C.; Shih, N-Y.; Shimoji, K. Tetrahedron Lett. 1984, 25, 5013.
 (11) Johnson, R. A.; Nidy, E. G.; Baczynski, L.; Gorman, R. R. J. Am. Chem. Soc. 1977, 99, 7738.
 (12) Porter, N. A.; Byers, J. D.; Mebane, R. C.; Gilmore, D. W.; Nixon, J. R. J. Org. Chem. 1978, 43, 2088.
 (13) Porter, N. A.; Byers, J. D.; Holden, K. M.; Menzel, D. M. J. Am. Chem. Soc. 1979, 101, 4319.
 (14) Porter, N. A.; Byers, J. D.; Ali, A. E.; Eling, T. E. J. Am. Chem. Soc. 1980, 102, 1183.
 (15) Review: Nelson, N. A.; Kelly, R. C.; Johnson, R. A. Chem. Eng. News 1982, 60 (Aug 16), 30.
 (16) Suzuki, M.; Noyori, R.; Hamanaka, N. J. Am. Chem. Soc. 1981, 103, 5606.
 (17) Suzuki, M.; Noyori, R.; Hamanaka, N. J. Am. Chem. Soc. 1982, 104, 2024.
 (18) Porter, N. A.; Mebane, R. C. Tetrahedron Lett. 1982, 23, 2289.
 (19) Turner, J. A.; Herz, W. Experientia 1977, 33, 1133.
 (20) Takahashi, K.; Kishi, M. J. Chem. Soc., Chem. Commun. 1987, 722.

[^3]: (21) Veysogln, T.; Mitschel, L. A. Tetrahedron Lett. 1981, 22, 1299.
 (22) Tanaka, T.; Kurozumi, S.; Toru, T.; Miura, S.; Kobayashi, M.; Ishimoto, S. Tetrahedron 1976, 33, 1713.
 (23) Posner, G. Org. React. 1972, 19, 1.
 (24) Scwartz, J.; Loots, M. J.; Kosugi, H. J. Am. Chem. Soc. 1980, 102, 1333.
 (25) Suzuki, M.; Suzuki, T.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1980, 21, 1247.

[^4]: (28) Mukaiyama, T.; Shoda, S.; Watanabe, Y. Chem. Lett. 1977, 383.
 (29) Hurd, C. D.; Puterbaugh, M. P. J. Am. Chem. Soc. 1930, 52, 950.
 (30) Corey, E. J.; Niwa, H.; Falk, J. R. J. Am. Chem. Soc. 1979, 101, 1586.
 (31) Bundy, G. L.; Baldwin, J. M.; Peterson, D. C. J. Org. Chem. 1983, 48, 977 .
 (32) Ronald, R. C. J. Org. Chem. 1985, 50, 5084.

[^5]: (33) Padwa, A.; Alexander, E. J. Am. Chem. Sac. 1970, 92, 1976.
 (34) House, H. O.; Wasson, R. L. J. Am. Chem. Soc. 1957, 79, 1488.
 (35) Kim, C. J.; Brown, H. C. J. Am. Chem. Soc. 1972, 94, 5043, 5051.

[^6]: ${ }^{\dagger}$ Department of Inorganic Chemistry.
 ${ }^{\ddagger}$ Department of Organic Chemistry.

[^7]: (1) This research was supported by a grant from the Australian Research Grants Scheme (to R.K.N.) and has been abstracted from the Ph.D. Thesis of Michael C. Harsányi, The University of Sydney, November, 1987.
 (2) Harsānyi, M. C.; Norris, R. K. Aust J. Chem. 1987, 40, 2063-2083.
 (3) Norris, R. K.; Randles, D. Aust. J. Chem. 1979, 32, 1487-1509.
 (4) Barker, S. D.; Norris, R. K. Aust. J. Chem. 1983, 36, 81-95.
 (5) Field, L. D.; Hambley, T. W.; Jacobs, B. D.; Wilson, K.; Norris, R. K. Aust. J. Chem., in press.

